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Polypropylene (PP) is used worldwide since it provides excellent Table 1. Results of Propylene—1,3-Butadiene Copolymerization

mechanical properties with low cost. The introduction of functional with 1-MMAO#

groups to PP enables it to be used for paint product, adhesion, print rate® BD Units in PPe

. ap age . . i i d f

ink, or compatibilizer with other polar materials. H, fme  yield kg MM/ 7 Tw
run BD? (MPa) (h) @ mol=Y)  (x10%) MY fiy fi, fi1s (°C)

Polymerization methods enable the introduction of functional
groups in precisely controlled structuress In the case of PP, the ; 8-32 8 1]30 tracc;eozs L7 196 25 33 54 00 102
stereospecificity and the copolymerization ability should be simul- 3 046 01 1.0 177 1770 275 1.7 00 48 40 104
taneously controlled, but the stereospecific catalysts with early 4 923 01 1.0 229 2290 26.4 20 00 2.8 25 125

5
6

transition metals are easily deactivated with polar functional groups. 069 0.1 1.0 047 474 254 18 00 6.1 57 94

Copolymerization with monomers possessing nonpolar functional 00 01 10 292 658 6.3 159
groups, so-called reactive monomers, attracts attention because off 00 0 1.0 2.91 243 72
its productivities and its conversion to various functional groups

. O - . : a Polymerization conditions: 100 mL autoclave; toluene, 40 mL;

in post-polymerization processgsAlthough simple diolefins, polymerization temperature, ©C; 1, 1 umol; Al/Zr (mol/mol), 10000;

divinylbenzene, etc., were investigated due to their economical Eg)plylene.cotr)centr?tiorll, }.7? moTLniSU_t?%igPe dcgnientratioy l(JmO(gE.C

advaniages compared o expensive reaciive monomers, there argf SVTICTEalen e (oo U B ) Dermines oY GrC

many problems, including cross-linking, cyclization, and low ¢ s the mole fraction of the 1,4-butadiene urfitz is that of the 1,2-

productivities!3—1° butadiene unit, anél—1 4 is that of the hydrogenated 1,4-butadiene unit in
Chung et al. found that additions of styrene (or its derivatives) the copolymers! Measured by DSC.

and hydrogen together in propylene polymerization gave styryl-

terminated PPs because hydrogen transfer selectively occurred after

styrene insertion, which forms dormant specfes. Conjugated

diolefins, such as 1,3-butadiene, also deactivat@efin polym-

erization. The formation of stable-allyl species after 1,4-butadiene run 3

insertion should be one of the reasons for low activities. The

introduction of hydrogen into the propylené,3-butadiene copo- He

lymerization should reactivate the-allyl zirconocene species M\L

formed by 1,4-inserted butadiene units (1,4-BD) to give-B&r

species and PP having a double bond at the chain end and pendant Ha

vinyl groups derived from 1,2-inserted butadiene units (1,2-BD). run 2 Hp

The polymer thus obtained can be useful as a precursor of functional MW\

PP and an aliphatic macromonomer. . i -
Copolymerization of propylene and 1,3-butadiene was conducted w

using an isospecific zirconocene catalystc-dimethylsilylbis(2-

methyl-4-phenylindenyl)zirconium dichloridel)( activated with

modified methylaluminoxane (MMAO). The copolymerization

results are summarized in Table 1. Copolymerization activities were

very low (runs 1 and 2), and the number-average molecular weight after 1,4-butadiene insertion described above.

(Mp) of the copolymer (run 2) was also lower compared to that of The 'H NMR spectra of the copolymers obtained with and

polypropylene synthesized under the same conditions in the absenc‘\e/vithout hydrogen (runs 2 and 3) are shown in Figure 1. There are
of butadiene (run 7). The introduction of hydrogen into the

Hp Heo/
X
Hp Ha

55 5.0 PPM

Figure 1. H NMR spectra of poly(propylenen-butadiene) obtained with
hydrogen (run 3) and without hydrogen (run 2).

(runs 3-5). These results rejected the selective hydrogen transfer

L o o three signals in the olefinic proton region. The copolymers obtained
copoly_merlzatlon enhanced the polymerlzanon' activity by abO_Ut without hydrogen (run 2) had two types of units derived from 1,3-
1000 times (runs 2 and 3). An increase of.butgdlene.c.o.ncentranon,butadiene’ that is, 1,4-BD and 1,2-BD. The similar contents of these
however, caused a decrease of polymerization activities to some | ..« indicate no selectivity of 1,2- and 2;{~1,4)-insertions for

extent (runs 35). TheM, value of the polymer synt_hesized with butadiene in this catalyst, whereas the copolymers obtained in the
hydrogen was roughly double compared to those without hydrogen presence of hydrogen had only 1,2-BD (runs53. An increase of

(Lunj.f? and :i)) TZ? molecular welghts of copolyme_rs obtlamr(]ed with butadiene concentration in the feed created a linear increase of the
the different butadiene concentrations were approximately the Samel,Z-BD contents in the copolymers. The structure of the copolymer

t Japan Chemical Innovation Institute. synthesized with hydrogen (run 3) was then characterizetf®y
* Hiroshima University. NMR (Figure 2). The resonances at 113 and 145 ppm were assigned
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6 Poly(propyleneran-1,3-butadiene) that contained pendant vinyl

2 2 units was successfully synthesized by the isospecific zirconocene
complex () activated with MMAO in the presence of hydrogen.
Hydrogen selectively transformed theallyl zirconocene species
formed by the 1,4-inserted butadiene to the-dlkyl species, which
resulted in the high activity of the copolymerization and the selective
introduction of pendant vinyl groups.
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Figure 2. **C NMR spectrum of poly(propylenean-butadiene) obtained Supporting Information Available: Experimental conditions,
with hydrogen (run 3). chemical shifts of plausible copolymer structures, BGNMR spectra
Scheme 1 of a copolymer synthesized with deuterium. This material is available

N free of charge via the Internet at http://pubs.acs.org.
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